배추
생산비 절감
경영 매뉴얼
전라남도 농업기술원
C.O.N.T.E.N.T.S

Part 01
전남의 배추 산업 현황

1. 재배 현황 .. 3
2. 가격 동향 .. 4
3. 생산비 및 수익성 .. 4

Part 02
배추 생산비 절감 방안

1. 생산비 절감 목표 .. 7
2. 오인별 절감 방안 .. 7

Part 03
배추 생산비 절감 경영모델 실험 결과

1. 실증단지 현황 ... 9
2. 경영모델 실험단지 주요 투입기술 9
3. 생력 기술화 일관 작업 흐름도 10
4. 실증 단지 효과 분석 11
5. 배추 생산비 절감 경영모델 우수 사례농가 14

Part 04
배추 생산비 절감 재배기술

1. 재배적 특성 ... 15
2. 재배환경 및 작물 .. 15
3. 품종 및 중자 선택 .. 19
4. 배추 기계식 기술 .. 24
5. 병해충 및 생리장해 33

[참고] 배추 생산비 절감 경영모델 확산 홍보
전남의 배추 산업 현황

1. 재배 현황

- 최근 재배면적 동향

<table>
<thead>
<tr>
<th>구분</th>
<th>2011년</th>
<th>2012년</th>
<th>2013년</th>
<th>2014년</th>
<th>2015년</th>
</tr>
</thead>
<tbody>
<tr>
<td>재배면적(ha)</td>
<td>5,208</td>
<td>3,822</td>
<td>4,409</td>
<td>9,168</td>
<td>6,978</td>
</tr>
</tbody>
</table>

- 생산량과 수량 추이

<table>
<thead>
<tr>
<th>연도별</th>
<th>농가수(호)</th>
<th>면적(ha)</th>
<th>총생산량(톤)</th>
<th>10a당 생산량(kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>4,409</td>
<td>418,343</td>
<td>9,488</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>9,168</td>
<td>826,654</td>
<td>9,016</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>20,235</td>
<td>652,806</td>
<td>9,355</td>
<td></td>
</tr>
</tbody>
</table>

※ 자료출처: 배추 수확면적 규모별 농가 및 면적(2015, 전남), 통계청, 재소생산량(압축류-전남), 통계청

- 배추 주산지역 변동

- 1970년 이후 김정용 배추의 주재배지역이 점차 변동하는 과정을 5년 단위 (또는 10년 단위)로 표시한 지도

<그림> 배추의 연도별 재배면적 변화
2 가격 동향

최근 5년간 가격동향

(단위: 원/kg)

<table>
<thead>
<tr>
<th>구분</th>
<th>1월</th>
<th>2월</th>
<th>3월</th>
<th>4월</th>
<th>5월</th>
<th>6월</th>
<th>7월</th>
<th>8월</th>
<th>9월</th>
<th>10월</th>
<th>11월</th>
<th>12월</th>
<th>연평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>350</td>
<td>524</td>
<td>921</td>
<td>1,214</td>
<td>726</td>
<td>492</td>
<td>795</td>
<td>902</td>
<td>1,279</td>
<td>995</td>
<td>790</td>
<td>1,082</td>
<td>837</td>
</tr>
<tr>
<td>2013</td>
<td>1,218</td>
<td>1,236</td>
<td>1,240</td>
<td>1,124</td>
<td>694</td>
<td>529</td>
<td>629</td>
<td>1,342</td>
<td>1,251</td>
<td>1,217</td>
<td>1,347</td>
<td>1,250</td>
<td>1,092</td>
</tr>
<tr>
<td>2014</td>
<td>482</td>
<td>473</td>
<td>360</td>
<td>356</td>
<td>337</td>
<td>301</td>
<td>601</td>
<td>786</td>
<td>804</td>
<td>497</td>
<td>417</td>
<td>384</td>
<td>479</td>
</tr>
<tr>
<td>2015</td>
<td>350</td>
<td>415</td>
<td>425</td>
<td>490</td>
<td>698</td>
<td>747</td>
<td>615</td>
<td>667</td>
<td>611</td>
<td>443</td>
<td>445</td>
<td>433</td>
<td>554</td>
</tr>
<tr>
<td>2016</td>
<td>552</td>
<td>823</td>
<td>1,200</td>
<td>1,508</td>
<td>1,143</td>
<td>625</td>
<td>750</td>
<td>1,524</td>
<td>2,104</td>
<td>1,063</td>
<td>817</td>
<td>900</td>
<td>1,066</td>
</tr>
</tbody>
</table>

※ 자료출처: 한국농수산식품유통공사 가격동향

최근 5년간 배추 가격동향

![가격 동향 차트: 2012~2016 연도]

<table>
<thead>
<tr>
<th>연도</th>
<th>1월</th>
<th>2월</th>
<th>3월</th>
<th>4월</th>
<th>5월</th>
<th>6월</th>
<th>7월</th>
<th>8월</th>
<th>9월</th>
<th>10월</th>
<th>11월</th>
<th>12월</th>
<th>연평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>350</td>
<td>524</td>
<td>921</td>
<td>1,214</td>
<td>726</td>
<td>492</td>
<td>795</td>
<td>902</td>
<td>1,279</td>
<td>995</td>
<td>790</td>
<td>1,082</td>
<td>837</td>
</tr>
<tr>
<td>2013</td>
<td>1,218</td>
<td>1,236</td>
<td>1,240</td>
<td>1,124</td>
<td>694</td>
<td>529</td>
<td>629</td>
<td>1,342</td>
<td>1,251</td>
<td>1,217</td>
<td>1,347</td>
<td>1,250</td>
<td>1,092</td>
</tr>
<tr>
<td>2014</td>
<td>482</td>
<td>473</td>
<td>360</td>
<td>356</td>
<td>337</td>
<td>301</td>
<td>601</td>
<td>786</td>
<td>804</td>
<td>497</td>
<td>417</td>
<td>384</td>
<td>479</td>
</tr>
<tr>
<td>2015</td>
<td>350</td>
<td>415</td>
<td>425</td>
<td>490</td>
<td>698</td>
<td>747</td>
<td>615</td>
<td>667</td>
<td>611</td>
<td>443</td>
<td>445</td>
<td>433</td>
<td>554</td>
</tr>
<tr>
<td>2016</td>
<td>552</td>
<td>823</td>
<td>1,200</td>
<td>1,508</td>
<td>1,143</td>
<td>625</td>
<td>750</td>
<td>1,524</td>
<td>2,104</td>
<td>1,063</td>
<td>817</td>
<td>900</td>
<td>1,066</td>
</tr>
</tbody>
</table>

3 생산비 및 수익성

가을배추 최근 5년간 소득

(단위: 원, kg/10a)

<table>
<thead>
<tr>
<th>구분</th>
<th>2011년</th>
<th>2012년</th>
<th>2013년</th>
<th>2014년</th>
<th>2015년</th>
</tr>
</thead>
<tbody>
<tr>
<td>총수입</td>
<td>2,160,285</td>
<td>4,083,686</td>
<td>2,704,736</td>
<td>1,738,404</td>
<td>1,796,538</td>
</tr>
<tr>
<td>경영비</td>
<td>909,590</td>
<td>981,168</td>
<td>1,083,782</td>
<td>730,738</td>
<td>800,553</td>
</tr>
<tr>
<td>소득</td>
<td>1,250,695</td>
<td>3,102,518</td>
<td>1,620,954</td>
<td>1,007,666</td>
<td>996,985</td>
</tr>
<tr>
<td>생산량</td>
<td>7,333</td>
<td>6,302</td>
<td>7,335</td>
<td>6,738</td>
<td>8,241</td>
</tr>
</tbody>
</table>

※ 자료출처: 지역별 농산물 소득자료, 농촌진흥청

4. 배추 생산비 절감 경영 매뉴얼
가는배추 최근 3년간 생산비

<table>
<thead>
<tr>
<th>구분</th>
<th>2013년</th>
<th>2014년</th>
<th>2015년</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>생산비</td>
<td>1,663,197</td>
<td>1,145,666</td>
<td>1,204,667</td>
<td>1,337,843</td>
</tr>
</tbody>
</table>

2015년 배추 생산비

<table>
<thead>
<tr>
<th>항목별</th>
<th>10a당 생산비</th>
<th>kg당 생산비</th>
<th>점유율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>생산비</td>
<td>1,380,943</td>
<td>163</td>
<td>100.0</td>
</tr>
<tr>
<td>총자·종모비</td>
<td>72,412</td>
<td>9</td>
<td>5.2</td>
</tr>
<tr>
<td>보통비료비</td>
<td>88,132</td>
<td>10</td>
<td>6.2</td>
</tr>
<tr>
<td>부산물비료비</td>
<td>97,949</td>
<td>12</td>
<td>7.1</td>
</tr>
<tr>
<td>농역비</td>
<td>78,111</td>
<td>9</td>
<td>5.5</td>
</tr>
<tr>
<td>수도광염비</td>
<td>22,060</td>
<td>3</td>
<td>1.6</td>
</tr>
<tr>
<td>기타재료비</td>
<td>115,850</td>
<td>14</td>
<td>8.4</td>
</tr>
<tr>
<td>소농구비</td>
<td>3,459</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>대농구상각비</td>
<td>147,538</td>
<td>18</td>
<td>10.7</td>
</tr>
<tr>
<td>영농시설상각비</td>
<td>23,293</td>
<td>3</td>
<td>1.7</td>
</tr>
<tr>
<td>수리·유지비</td>
<td>9,013</td>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td>기타비용</td>
<td>69</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>임차료</td>
<td>농가계·시설</td>
<td>20,958</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>토지</td>
<td>11,250</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>위탁영농비</td>
<td>27,115</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>고용노동비</td>
<td>88,344</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>자가노동비</td>
<td>467,587</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>유동자본비용</td>
<td>5,440</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>고정자본비용</td>
<td>26,481</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>토지자본비용</td>
<td>80,881</td>
<td>10</td>
</tr>
</tbody>
</table>

※ 자료출처: 지역별 농산물 소득자료, 농촌진흥청
가격과 생산량 변화에 따른 수익성 추정

(단위: 천원/10a)

<table>
<thead>
<tr>
<th>단가(원)</th>
<th>6,000</th>
<th>6,500</th>
<th>7,000</th>
<th>7,500</th>
<th>8,000</th>
<th>8,500</th>
<th>9,000</th>
<th>9,500</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>3,600</td>
<td>3,900</td>
<td>4,200</td>
<td>4,500</td>
<td>4,800</td>
<td>5,100</td>
<td>5,400</td>
<td>5,700</td>
</tr>
<tr>
<td>650</td>
<td>3,900</td>
<td>4,225</td>
<td>4,550</td>
<td>4,875</td>
<td>5,200</td>
<td>5,525</td>
<td>5,850</td>
<td>6,175</td>
</tr>
<tr>
<td>700</td>
<td>4,200</td>
<td>4,550</td>
<td>4,900</td>
<td>5,250</td>
<td>5,600</td>
<td>5,950</td>
<td>6,300</td>
<td>6,650</td>
</tr>
<tr>
<td>750</td>
<td>4,500</td>
<td>4,875</td>
<td>5,250</td>
<td>5,625</td>
<td>6,000</td>
<td>6,375</td>
<td>6,750</td>
<td>7,125</td>
</tr>
<tr>
<td>800</td>
<td>4,800</td>
<td>5,200</td>
<td>5,600</td>
<td>6,000</td>
<td>6,400</td>
<td>6,800</td>
<td>7,200</td>
<td>7,600</td>
</tr>
<tr>
<td>850</td>
<td>5,100</td>
<td>5,525</td>
<td>5,950</td>
<td>6,375</td>
<td>6,800</td>
<td>7,225</td>
<td>7,650</td>
<td>8,075</td>
</tr>
<tr>
<td>900</td>
<td>5,400</td>
<td>5,850</td>
<td>6,300</td>
<td>6,750</td>
<td>7,200</td>
<td>7,650</td>
<td>8,100</td>
<td>8,550</td>
</tr>
<tr>
<td>950</td>
<td>5,700</td>
<td>6,175</td>
<td>6,650</td>
<td>7,125</td>
<td>7,600</td>
<td>8,075</td>
<td>8,550</td>
<td>9,025</td>
</tr>
<tr>
<td>1,000</td>
<td>6,000</td>
<td>6,500</td>
<td>7,000</td>
<td>7,500</td>
<td>8,000</td>
<td>8,500</td>
<td>9,000</td>
<td>9,500</td>
</tr>
<tr>
<td>1,050</td>
<td>6,300</td>
<td>6,825</td>
<td>7,350</td>
<td>7,875</td>
<td>8,400</td>
<td>8,925</td>
<td>9,450</td>
<td>9,975</td>
</tr>
</tbody>
</table>
1. 생산비 절감 목표

2014년 대비 2018년까지 13.7% 절감
- '16) 4% → '17) 8% → '18) 13.7%

10a당 생산비: 1,684,563원 → 1,454,112원(13.7%)
kg당 생산비: 267원 → 226원(15.4%)

2. 요인별 절감 방안

노동비 절감

단위면적당 노동비 26.8% 절감
(13년) 671,547원/10a → 491,547원

- 추비, 방제제 사용량 및 방제횟수 최소화
 - 추비와 농약 복합처리로 실포 횟수: 2~3회 → 1회
 - 비기주 동반식물 가정자리 재배: 농약비 절감(320천원/10a)

- 공정 육묘 및 정식 작업 기계화
 - 고용·자가노동비 절감: 2인/8시간/10a → 2.5시간/10a
 - 노동투입시간: 71.3시간 → 53.8시간(24.5% 절감)
주요 작업단계별 투하노동시간 절감
(단위: 시간/10a)

<table>
<thead>
<tr>
<th>구 분</th>
<th>(현행)</th>
<th>(개선)</th>
<th>절감시간</th>
<th>절감률(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>모란준비, 밭종, 경운, 면칭</td>
<td>18.0</td>
<td>5.6</td>
<td>12.4</td>
<td>68.9</td>
</tr>
<tr>
<td>분포관리</td>
<td>31.2</td>
<td>25.6</td>
<td>5.6</td>
<td>17.9</td>
</tr>
<tr>
<td>수확, 선별, 포장, 운반</td>
<td>23.6</td>
<td>22.6</td>
<td>1.0</td>
<td>4.2</td>
</tr>
<tr>
<td>계</td>
<td>72.8</td>
<td>53.8</td>
<td>19.0</td>
<td>24.5</td>
</tr>
</tbody>
</table>

농기계 공동이용으로 기계비용 절감

- 배추 기계 이식 관련 농기계 및 시설 공동이용 효과

<table>
<thead>
<tr>
<th>구 분</th>
<th>농가수(회)</th>
<th>작업규모(ha)</th>
<th>연간기계비용(천원/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>개별경영</td>
<td>1</td>
<td>3</td>
<td>6,109</td>
</tr>
<tr>
<td>공동이용</td>
<td>31</td>
<td>28</td>
<td>1,207</td>
</tr>
</tbody>
</table>

주 1) 연간기계비용은 김가상가비+고정자본이자임
주 2) 배추 기계이식 관련 농기계 및 시설: 트랙터, 피복기, 이식기, 밭종기, 방재기, 육묘시설

수량 증대에 의한 생산비 절감

kg당 생산비 15.4% 절감
6,302kg/10a(267원/kg) → 6,428kg/10a(226원/kg)

- 친환경 재배에 적합한 재식거리
 - 관행 60cm×50cm → 60cm×30~40cm
- 칼슘 경피증 발생 경감을 위한 재배관리
 - 칼슘공급 : 석회 200kg/10a, 적기판수, 정식 후 3주경 칼슘제 염면살포
- 병해충 방제 및 방제적기 결정
 - 비기주 동반식물 재배 → 노동력, 농약비 절감 효과(320원/10a)
 - 기울배추 재배 시 방제적기 결정 → 방제노력 2회 감소
1. 실종단지 현황

<table>
<thead>
<tr>
<th>단지명</th>
<th>대표농가</th>
<th>농가수(호)</th>
<th>면적(ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>31</td>
</tr>
</tbody>
</table>

2. 경영모델 실종단지 주요 투입기술

<table>
<thead>
<tr>
<th>구분</th>
<th>현장접목 기술</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>토양관리</td>
<td>• 퇴비 2,500kg, 시비량(N-P-K=32-7.8-1.9/10a) • 다비성 작물 후작에도 밀가름 사용</td>
<td>다수화</td>
</tr>
<tr>
<td>두목 형태 및 규격</td>
<td>• 기계정직을 위한 조간거리와 주간거리 500mm, 두목폭 800mm, 고량폭 300mm</td>
<td>다수화</td>
</tr>
<tr>
<td>품 종</td>
<td>• 불암플러스, 휴프람골드</td>
<td>생력, 다수화</td>
</tr>
<tr>
<td>파종·육묘</td>
<td>• 4월 중 하순에 기계전용 128구 트레이 파종 - 10a 소요량 25판 • 상토는 원예용 육묘 상토 사용</td>
<td>생력, 다수화</td>
</tr>
<tr>
<td>육묘관리</td>
<td>• 분양 2매시 갈슘제 사용 • 육묘시 생육억제재 반나리(히석배수 3,000배) 사용</td>
<td>생력</td>
</tr>
<tr>
<td>병해충방제</td>
<td>• 면티콜터 활용(항공방제등록 억제 활용하거나 등록약제 없는경우 기존약제를 제조업체에 사용방법 문의하여 적용) • 배추흰나비, 양병, 무증병, 노균병 예방위주 방제</td>
<td>생력, 다수화</td>
</tr>
<tr>
<td>수 확</td>
<td>• 정식후 약 90일 후 • 톤백 수확(100150포기/톤백) • 배추 수확기 중량은 포기당 3.83.4kg</td>
<td>생력</td>
</tr>
<tr>
<td>선 별</td>
<td>• 포기당 중량 2kg 이하는 수확하지 않음 • 포장에서 전업 제거</td>
<td>생력</td>
</tr>
</tbody>
</table>
생식기계화 일관 작업 흐름도

배추 생식기계화 일관작업 체계 흐름도

<table>
<thead>
<tr>
<th>작업</th>
<th>장비</th>
<th>작업내용</th>
<th>기간</th>
</tr>
</thead>
<tbody>
<tr>
<td>파종기</td>
<td>파종기</td>
<td>파종</td>
<td>8월초~중순</td>
</tr>
<tr>
<td>공동육묘장</td>
<td>육묘</td>
<td>육묘</td>
<td>20~25일간</td>
</tr>
<tr>
<td>피복기</td>
<td>바닐람정</td>
<td>피복</td>
<td>8월초~9월말</td>
</tr>
<tr>
<td>기계이식기</td>
<td>정식</td>
<td>기계이식</td>
<td>9월~11월</td>
</tr>
<tr>
<td>멀티트랙터</td>
<td>병해충방제</td>
<td>병해충방제</td>
<td>11월~12월</td>
</tr>
<tr>
<td>수확기</td>
<td>수확</td>
<td>수확</td>
<td></td>
</tr>
</tbody>
</table>

생식 기계화 및 시설 투입

기계이식, 육묘정, 멀티트랙터

파종 ~ 수확에 소요되는 기계 및 시설 투자비

<table>
<thead>
<tr>
<th>작업</th>
<th>기계/시설</th>
<th>투입금액(천원)</th>
<th>투입금액 산출내역</th>
</tr>
</thead>
<tbody>
<tr>
<td>파종</td>
<td>파종기</td>
<td>10,000</td>
<td>1대×10,000,000원</td>
</tr>
<tr>
<td>육묘</td>
<td>육묘하우스 (198m²)</td>
<td>27,000</td>
<td>1세대×27,000,000원</td>
</tr>
<tr>
<td>경운정지</td>
<td>트랙터</td>
<td>73,000</td>
<td>1대×73,000,000원</td>
</tr>
<tr>
<td>두목형성, 피복기</td>
<td>피복기</td>
<td>7,000</td>
<td>1대×7,000,000원</td>
</tr>
<tr>
<td>정식</td>
<td>이식기</td>
<td>47,250</td>
<td>3대×15,750,000원</td>
</tr>
<tr>
<td>방제</td>
<td>방제기</td>
<td>8,000</td>
<td>1대×8,000,000원</td>
</tr>
<tr>
<td>계</td>
<td></td>
<td>172,250</td>
<td></td>
</tr>
</tbody>
</table>

60ha 기준
4) 실종 단지 효과 분석

생산비 절감효과와 요인 분석

1) 생산비 절감 효과
 가) 노동시간 50.9% 절감 : 57.6시간/10a → 28.3시간

주요 농작업별 노동시간 절감 효과

(단위: 시간/10a)

<table>
<thead>
<tr>
<th>구분</th>
<th>실종 단지</th>
<th>‘18년 목표 (C)</th>
<th>절감률(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>관행 (A)</td>
<td>개선 (B)</td>
<td>B/A</td>
</tr>
<tr>
<td>파종육묘 단계</td>
<td>4.1</td>
<td>2.4</td>
<td>5.6</td>
</tr>
<tr>
<td>본 포 관리</td>
<td>33.8</td>
<td>6.0</td>
<td>25.6</td>
</tr>
<tr>
<td>수확선별단계</td>
<td>19.7</td>
<td>19.9</td>
<td>22.6</td>
</tr>
<tr>
<td>계</td>
<td>57.6</td>
<td>28.3</td>
<td>53.8</td>
</tr>
</tbody>
</table>

나) 생산비 17.9% 절감 : 1,639천원/10a → 1,346천원

비용 절감 효과

<table>
<thead>
<tr>
<th>구분</th>
<th>실종 단지</th>
<th>'18년목표 (C)</th>
<th>증감률(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>관행(A)</td>
<td>개선(B)</td>
<td>B/A</td>
</tr>
<tr>
<td>경영 비</td>
<td>1,318</td>
<td>1,115</td>
<td>△15.4</td>
</tr>
<tr>
<td>생산 비</td>
<td>1,639</td>
<td>1,346</td>
<td>△17.9</td>
</tr>
</tbody>
</table>

다) kg당 생산비 21.3%절감 : 238원/kg → 187원

kg당 생산비 절감 효과

<table>
<thead>
<tr>
<th>구분</th>
<th>실종 단지</th>
<th>'18년목표 (C)</th>
<th>증감률(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>관행(A)</td>
<td>개선(B)</td>
<td>B/A</td>
</tr>
<tr>
<td>수령(kg/10a)</td>
<td>6,900</td>
<td>7,200</td>
<td>4.3</td>
</tr>
<tr>
<td>kg당 생산비</td>
<td>238</td>
<td>187</td>
<td>△21.3</td>
</tr>
</tbody>
</table>
2) 생산비 증감 세부 요인분석
(기준: 원/10ℓ)

<table>
<thead>
<tr>
<th>비 목 별</th>
<th>생산비 절감기술 실천농가</th>
<th>증감률</th>
<th>증감 요인</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>관행(A)</td>
<td>도입(B)</td>
<td>B/A</td>
</tr>
<tr>
<td>수 량</td>
<td></td>
<td></td>
<td>4.3</td>
</tr>
<tr>
<td>증자·종묘비</td>
<td>30,000</td>
<td>27,000</td>
<td>△10.0</td>
</tr>
<tr>
<td>농약 비</td>
<td>270,000</td>
<td>200,000</td>
<td>△25.9</td>
</tr>
<tr>
<td>농수공업비</td>
<td>600</td>
<td>600</td>
<td>0.0</td>
</tr>
<tr>
<td>기타재료비</td>
<td>75,000</td>
<td>75,000</td>
<td>0.0</td>
</tr>
<tr>
<td>소·농 구비</td>
<td>59,000</td>
<td>59,000</td>
<td>0.0</td>
</tr>
<tr>
<td>대농가구상각비</td>
<td>84,450</td>
<td>90,963</td>
<td>7.7</td>
</tr>
<tr>
<td>영농시설상각비</td>
<td>1,535</td>
<td>13,350</td>
<td>177.0</td>
</tr>
<tr>
<td>수리·유비</td>
<td>30,500</td>
<td>47,200</td>
<td>54.8</td>
</tr>
<tr>
<td>기타 비용</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>농기계설립및운영비</td>
<td>81,000</td>
<td>81,000</td>
<td>0.0</td>
</tr>
<tr>
<td>위탁영농비</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>고용노동비</td>
<td>304,850</td>
<td>139,475</td>
<td>△54.2</td>
</tr>
<tr>
<td>계</td>
<td>1,318,895</td>
<td>1,115,538</td>
<td>△15.4</td>
</tr>
<tr>
<td>자가 노동 비</td>
<td>249,280</td>
<td>143,193</td>
<td>△42.6</td>
</tr>
<tr>
<td>유동자본비용</td>
<td>12,843</td>
<td>10,534</td>
<td>△18.0</td>
</tr>
<tr>
<td>고정자본비용</td>
<td>4,245</td>
<td>23,159</td>
<td>446.5</td>
</tr>
<tr>
<td>토지자본비용</td>
<td>54,000</td>
<td>54,000</td>
<td>0.0</td>
</tr>
<tr>
<td>계</td>
<td>1,639,263</td>
<td>1,346,424</td>
<td>△17.9</td>
</tr>
<tr>
<td>kg당 생산비</td>
<td>238</td>
<td>187</td>
<td>△21.3</td>
</tr>
<tr>
<td>생산비용절감률</td>
<td></td>
<td></td>
<td>17.9</td>
</tr>
</tbody>
</table>

생산비 절감기술 도입 경제적 효과

배추 생산비 절감 재배기능 도입단지의 경제적 효과

<table>
<thead>
<tr>
<th>배추 생산비 절감 재배기능 도입단지 (ha)</th>
<th>인력대체 (명)</th>
<th>기대효과(백만원)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>농업생산액 증가</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>1,535</td>
</tr>
</tbody>
</table>

주) 배추 생산비 절감 재배기능: 전자동파종 + 공동육묘 + 기계피복 + 기계이식 + 드론방제 임
배추 생산비 절감 경영모델 우수 시범농가

농장명_모인팜스

일반현황
- 농 가 명: 손병인
- 주 소: 전남 영암군 시종면 금월로 305
- 경영규모: 5.8ha
- 재배면적: 3ha

재배기술
- 재배품종: 불암플러스, 취파람골드
- 재배방법
 - 파종: 전지동 파종기
 - 육묘: 비닐하우스 공동육묘장 활용
 - 정식: 기계 이식기
 - 방재: 드론이용 공동방재

수익성
- 생산비 절감 경영모델 도입 전후 수량 및 수익성
 (단위: 원, %)

<table>
<thead>
<tr>
<th>구분</th>
<th>도입전(A)</th>
<th>도입후(B)</th>
<th>증감률(B/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>수량(kg/10a)</td>
<td>6,900</td>
<td>7,200</td>
<td>4.3</td>
</tr>
<tr>
<td>1kg당 생산비</td>
<td>238</td>
<td>187</td>
<td>△21.3</td>
</tr>
<tr>
<td>10kg당 생산비</td>
<td>1,639,263</td>
<td>1,346,422</td>
<td>△17.9</td>
</tr>
<tr>
<td>10kg당 경영비</td>
<td>1,318,895</td>
<td>1,115,538</td>
<td>△15.4</td>
</tr>
<tr>
<td>총 수입</td>
<td>3,450,000</td>
<td>3,600,000</td>
<td>4.3</td>
</tr>
<tr>
<td>소득</td>
<td>2,131,106</td>
<td>2,484,463</td>
<td>16.6</td>
</tr>
<tr>
<td>노동투입시간 (시간/10a)</td>
<td>57.6</td>
<td>28.3</td>
<td>△50.8</td>
</tr>
</tbody>
</table>
1. 재배적 특성

생리적 특성
1) 배추는 13℃이하의 낮은 온도에서 일정기간 경과하면 꽃눈이 생기고, 고온 장일하에서 장다가 올라와 꽃이 피게 됨
2) 배추는 종자가 물을 흡수하여 썩트기 시작할 때부터 언제라도 낮은 온도에 처하면 꽃눈이 만들어지는 종자 훈화형임
3) 일반적으로 꽃눈 분화 온도는 0~13℃의 범위이며 특히 2~5℃는 자온감응에 가장 좋은 온도임

형태적 특성
1) 배추의 잎차례는 2/5 나선형이고, 줄기는 로제트 모양, 꽃은 담황색의 십자 복통상화피이며, 6개의 수술과 1개의 암술이 있음
2) 뿌리는 굵은 원뿌리와 다수의 갈뿌리 및 뿌리털로 구성되며, 뿌리 뼈은 깊이는 1m, 폭 3m에 달하기도 함
3) 배추는 주로 속이 짧은 품종이 재배되고 있고, 반 정도 차는 품종은 일부만 재배되고 있음
4) 일조가 충분하고 영양상태가 좋으면 식물호르몬 중 옥신(auxin)이 체내에서 생성되고 이 옥신이 잎의 뒷쪽으로 이동해서 세포를 신장시켜 그 결과 잎의 뒷쪽이 표면보다 세포가 크게 발육하므로 잎은 서게 되고 결과상태가 됨

2. 재배환경 및 작정

온도
1) 배추는 서늘한 기후를 좋아하는 호냉성 채소로 성장에 적합한 온도는 18~20℃이고, 결정하는 데는 이보다 약간 낮은 온도인 15~18℃가 적당하며 결정하는 데 가장 낮은 온도는 4~5℃정도임
2) 생육 초기에는 비교적 높은 온도에서 잘 자라며 결과를 시작하면 고온에 약해져 결과가 불량하며 정상적인 생육이 불가능해짐

3) 비교적 추위에는 강한 편으로 동해를 잇는 온도는 -8℃정도이나 갑자기 온도가 낮아지면 -3℃정도에서도 피해를 입을 수 있음

확빛(광)

1) 광에 대한 반응은 잎의 나이에 따라 변하는데 어린잎이나 오래된 잎은 광에 대한 반응이 둔하고 성숙한 잎에서는 반응이 민감함

2) 배추는 강한 확빛 아래에서 광합성량이 증가하고 생육에 필요한 물질의 생성도 촉진하며 특히 생육 초기 약광 아래에서는 식물체가 연약하고 울자라므로 광을 충분히 받아도 되어야 함

3) 결과가 시작되면 약광 아래에서 결과가 촉진되며, 결과가 적어지므로 결과기에는 강한 광보다는 약한 광이 유리하다. 잎이 곧게 저져서 결과되는데 필요한 광확빛시간은 8시간 정도임

4) 배추의 동화작용에 중요한 광 보상점은 1.5~2.0klux, 포화점은 40klux로 비교적 약광에 잘 견딜 수 있습니다

수분

1) 배추의 구성 성분은 대부분이 수분이 수분이며 짧은 기간에 왕성하게 발육하므로 비교적 많은 수분을 필요로 함

2) 배추는 건조에 약하여 생육 초기에 가물면 잎 생기는 것과 생육이 억제되어 수확량이 급격히 감소하게 됨

3) 배추가 가장 잘 자라는 시기에는 하루에 10a당 200kg 이상의 무게가 증가하는데, 수분을 가장 많이 요구하는 시기는 파종 후 40~50일경인 결과 초기입니다
토양

1) 배추 뿌리는 길게 뻗고 잔뿌리가 많아 토심이 깊으면서 물 빠짐이 잘 되는 토양에 보수력과 배수가 잘 되는 사질토양이 좋음

2) 충적토에서는 배추의 생육이 완성되어 고품질의 배추를 재배할 수 있는 반면 사질토양의 경우 초기의 생육은 빠르나 후기 생육이 불량하여 애기 놋렇게 되는 현상이 빨리 온

3) 점질토양에서는 생육은 늦지만 잎이 높 الرح게 되거나 잎이 떨어지는 것이 늦고 오랫동안 녹색을 유지함

4) 토양산도는 pH 5.5~6.8 정도로 약한 산성이 좋으나 산성토양에서는 뿌리 혹병 및 석회 결핍증이 발생할 수 있음

작형분화

1) 배추는 연중 생산체계가 확립되어 파종, 수확하고 있으나, 각 작형마다 생산이 불안정하여 해에 따라 생산성의 차이가 있음

2) 재배작기보다 빨리 또는 늦게 파종하는 경우, 추외 병해충 발생 등이 심해져 문제가 되므로 주의해야 함

배추의 재배작형

<table>
<thead>
<tr>
<th>재배작형</th>
<th>파종기(월)</th>
<th>수확기(월)</th>
<th>주 재배지역</th>
</tr>
</thead>
<tbody>
<tr>
<td>가을 조기재배</td>
<td>7중~8상</td>
<td>9하~10중</td>
<td>경기북부</td>
</tr>
<tr>
<td>가을 재배</td>
<td>8중</td>
<td>10하~11중</td>
<td>전국</td>
</tr>
<tr>
<td>늦 가을재배</td>
<td>8하~9상</td>
<td>11상~12상</td>
<td>남부해안</td>
</tr>
<tr>
<td>땅 동 재배</td>
<td>8하~9중</td>
<td>1상~2하</td>
<td>남부해안, 제주</td>
</tr>
<tr>
<td>하우스재배</td>
<td>11중~1중</td>
<td>3상~5상</td>
<td>남부, 중부</td>
</tr>
<tr>
<td>터 널 재배</td>
<td>1하~2중</td>
<td>5상~5하</td>
<td>전국</td>
</tr>
<tr>
<td>봉노지재배</td>
<td>3상~4하</td>
<td>6상~7상</td>
<td>전국</td>
</tr>
<tr>
<td>주고랭지재배</td>
<td>4중~7중</td>
<td>7상~9상</td>
<td>해발400~600m</td>
</tr>
<tr>
<td>고랭지재배</td>
<td>5중~7상</td>
<td>7하~9상</td>
<td>해발600~800m</td>
</tr>
</tbody>
</table>
가을재배

1) 적기보다 일찍 파종하면 바이러스병 및 뿌리마름병이 발생할 수 있고 수확기에 석회 결핍증이 발생할 수 있으므로 석회 결핍에 강한 품종을 선택해야 함

2) 한파로 인해 동해를 잃을 수 있으므로 재배 시 주의하며 바이러스병, 무름병, 뿌리마름병, 세균성측변병 등의 병충해 방제 필요

노지 월동재배

1) 월동 전 지나친 경우는 노화와 추대가 빠르고 파종기가 늦어지면 결국 잎수를 확보하지 못해 불결구 추대하는 경우가 있음

2) 토양이 건조할 경우 석회 결핍증 발생이 심하므로 수분관리에 유의하고 12월 상순경에는 배추를 묻어 주어 동해를 방지
하우스·터널재배
1) 파종기를 앞당기면 저온으로 곧이어 형성되어 추대하므로 육묘에 필요한
난방비 등의 관리가 증가하므로 단추대성 폐종을 선택.
2) 육묘 시 야간 최저 온도가 13℃이상 되도록 보온
3) 비료의 흡수가 원활하도록 토양이 과습하거나 건조하지 않게 수분관리에
유의하여 석회나 봉소 결핍증을 방지
4) 생육 후기에 노군병, 수확기에는 무균병, 밀동석안병 방제

봉 노지 및 고타지재배
1) 파종이 적기보다 이를 경우 저온에 의해 곧이어 형성되어 추대됨
2) 파종기가 늦으면 고온기에 결구되어 무균병, 바이러스병, 노군병이 발생
하므로 단추대성이면서 내병성 및 석회, 봉소 결핍증의 강한 폐종을 선택하고
적기에 파종

품종 및 종자 선택
품종의 분화
1) 배추는 결구형과 불결구형으로 나뉘고 결구형은 다시 밀동 부분만 결구하는
RecyclerView로 완전히 결구하는 결구형으로 나누어짐
2) 우리나라의 오래 전부터 조선배추와 개성배추 등 반결구형이 널리 이용되었
는데 개량된 결구배추가 도입된 후 결구배추의 재배면적이 급속히 늘어나면서
현재는 재래종 배추가 거의 없음

국내 주요 품종 특성
1) 우리나라 시판 품종은 종묘회사에서 육성 보급하고 있고, 대부분 1대 결종
품종으로 매년 1~2품종씩 신품종이 육성되고 있음
2) 시판중인 품종차에서 속있이 노란 품종을 선호함에 따라 노량, 황, 금 등의 단어가 붙은 품종은 속있이 노란 품종을 말하고, CR이라는 단어가 붙으면 뿌리축병에 저항성을 가지는 품종을 말함
3) 노지월등 품종은 풀, 동 등 거울을 상징하는 단어가 들어 있음

파종 및 육묘

1) 육묘용 상토의 조건
 가) 유기질이 풍부하여 비옥한 것으로, 병원균에 오염되지 않으면 것으로 발 흙이나 논흙보다 오염되었을 가능성이 적은 산 흙을 이용
 나) 미숙퇴비를 사용하면 가스정지가 생리정지가 발생할 수 있으므로 반드시 완숙된 퇴비를 사용하고 질소질 비료의 과다사용을 자제
 다) 뿌리의 발육이 좋은 상토로 지나치게 점질일 경우 뿌리의 발육이 나빠지고 사질일 경우 상토가 부서질 가능성이 높아 활착이 늦어지므로 사질양토를 이용

2) 파종
 가) 직파재배는 깊이 6~8㎝ 재식거리는 조생중은 60×35㎝, 만생은 65×40㎝가 적당하고, 수온은 분엽이 5~6매가 될 때까지 2~3회 정도 실시
 나) 육묘재배 시에는 플러그 상자가 포트나 연상보다 가볍고 운반이 용이하여 많이 이용되고 있음
 다) 플러그 상자는 50공부터 288개의 모를 기를 수 있는 트레이가 시판되고 있고, 모 기르는 간간이 짧은 것은 구 습자가 많은 플러그 상자를 이용하여 육묘함
 라) 복토는 종자 두께의 2~3배가 적당하고, 파종 후 2~3일이면 발아가 완료되는데 발아율은 보통 95%가 넘으므로 따로 보식할 필요는 없으나, 기계 정식용은 검주가 없도록 모판 관리를 해야 함

3) 육묘
 가) 육묘시 저온에 감응하지 않도록 온상을 관리하는데 15~20℃로 유지하고 햇빛이 잘 떨게 하며 햇기를 철저히 하여 모의 도장을 막아야 함
나) 정식 2~3일 전에 온도를 낮춰 순화 후 정식해야 활착이 빠름
다) 고온기에는 온도상승에 주의를 기울여야 하며, 전릿물, 좁나방, 파방나방, 벼룩잎벌레 등 총에 의한 피해를 막는 것이 가장 중요함
라) 총에 의한 바이러스병과 노균병 등의 전염을 막기 위해 한랭시나 망으로 피복하고 4~5일 간격으로 살충제를 살포함

4) 모 기름 때 거름주기
가) 싹토 종류마다 비료의 혼합이 다르고, 관수량에 따라 싹토에 들어 있는 비료분이 부족하게 되므로 추비를 주어야 함
나) 관수량은 포트 구멍에서 물이 흐르지 않을 정도가 적당하고, 요소 0.1%액을 만들어 2~3일 간격으로 시비하여 주면 무난함
다) 비료분이 없는 싹토를 이용할 경우에는 EC 1.2 dS/m 정도의 액비를 초기에는 3~4일, 후기에는 1~2일 간격으로 살수 관수

5) 봉배추 용묘기간 중 야간저온 효과(국립원예특목과학원, 2012)
가) 봉배추 품종 용묘시 최대 5℃에서 15일간의 야간 저온처리에 의하여 유묘 생육은 크게 저하하였으나 정식 90일 후 정상적인 수확이 가능하였고, 추대가 발생하지 않았음
나) 추대에 미치할 것으로 추정되는 품종의 경우 파종 5일 후의 유묘에 10일간의 5℃ 야간 저온노출 시 회아분화 할 수 있음
다) 어음배추와 가을배추의 경우 야간저온에 노출되는 시간과 강도가 강해질수록 추대가 축진 되었음

【정식 및 비배관리】

1) 발준비
가) 밤겨름은 포장 전면에 살포한 다음 곧게 라터리 친 후 이끌을 만드는데 특히 하우스재배의 경우에는 정식 20일 전에 비닐을 찢어 낮 동안 햇빛을 이용하여 늘어붙은 뿌를 녹여 주어야 함
나) 시설을 이용 하는 하우스나 터널재배 시에는 밤겨름으로 준 요소나 미숙 퇴비에서 발생한 가스 피해가 생길 수 있으므로 주의
2) 정식
가) 정식할 모의 크기는 본업이 6~7매, 봉, 고랭지재배에서는 본업이 5~6매, 가을재배 시는 본업이 3~4매 정도가 적당함
나) 재식거리는 조생종 60×35, 중생종 60×45, 만생종은 65×45cm 정도임
다) 시기는 하우스 및 태널재배 시는 날 오전이 좋고, 여름 및 가을재배에서는 총리 날 오후에 정식하는 것이 모의 활착에 좋음
라) 정식 후에는 물을 충분히 주어야 활착이 빠르고, 하우스나 태널재배는 정식 3~4일 전에 예비를 써서 자운을 높여준 후 정식

3) 거름주기
가) 배추는 초기 생육이 왕성해야 결과가 좋으므로 밀거름에 중점을 두어 퇴비, 닭똥 등의 유기질 비료를 충분히 사용해야 함
나) 밀거름의 양은 10a당 퇴비 3,000kg, 질소 20~26kg, 인산 12~20kg, 칼리 20~30kg 정도임
다) 결과가 시작되는 시기에 비료 요구도가 가장 높으므로 덮기름을 15일 간격으로 3~4회 사용
라) 3요소 이외의 석회나 봉소 길림액 비료 사용 시 사용
마) 토성이 모래땅일 경우 진흙에 비해 비료분의 유실이 많으므로 덮기름을 높리거나 염면시비를 함
바) 여름철에 장마나 태풍 등에 의하여 비료 유실이 많을 경우와 비료 요구도가 많은 품종은 생육 후기까지 비료분이 부족하지 않도록 덮기름을 주

● 기준 사비양

<table>
<thead>
<tr>
<th>비료명</th>
<th>총량</th>
<th>밀거름</th>
<th>옥구름</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1회</td>
</tr>
<tr>
<td>퇴비</td>
<td>2.50</td>
<td>2.50</td>
<td>-</td>
</tr>
<tr>
<td>질소</td>
<td>32.0</td>
<td>11.0</td>
<td>7.0</td>
</tr>
<tr>
<td>인산</td>
<td>7.8</td>
<td>7.8</td>
<td>-</td>
</tr>
<tr>
<td>칼리</td>
<td>19.8</td>
<td>11.0</td>
<td>-</td>
</tr>
<tr>
<td>석회</td>
<td>100</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>봉사</td>
<td>1.5</td>
<td>1.5</td>
<td>-</td>
</tr>
</tbody>
</table>
하우스 및 터널 봉배추 시비 예

(기준: kg/10a)

<table>
<thead>
<tr>
<th>비료명</th>
<th>총 량</th>
<th>밀기름량</th>
<th>웃기름량</th>
<th>1회</th>
<th>2회</th>
<th>3회</th>
</tr>
</thead>
<tbody>
<tr>
<td>유 안</td>
<td>144</td>
<td>51</td>
<td>27</td>
<td>33</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>염화가리</td>
<td>45</td>
<td>18</td>
<td>6</td>
<td>15</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>용성인비</td>
<td>100</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>소 석회</td>
<td>90</td>
<td>90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>봉 사</td>
<td>1.5</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>추비시기</td>
<td>-</td>
<td>-</td>
<td>정식 후 15일</td>
<td>정식 후 30일</td>
<td>정식 후 45일</td>
<td></td>
</tr>
</tbody>
</table>

가을배추 시비 예

(기준: kg/10a)

<table>
<thead>
<tr>
<th>비료명</th>
<th>총 량</th>
<th>밀기름량</th>
<th>웃기름량</th>
<th>1회</th>
<th>2회</th>
<th>3회</th>
<th>4회</th>
</tr>
</thead>
<tbody>
<tr>
<td>요 소</td>
<td>65</td>
<td>30</td>
<td>7</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>염화가리</td>
<td>45</td>
<td>23</td>
<td>-</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>용성인비</td>
<td>100</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>소 석회</td>
<td>100</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>봉 사</td>
<td>1.5</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>추비시기</td>
<td>-</td>
<td>-</td>
<td>정식 후 15일</td>
<td>정식 후 30일</td>
<td>정식 후 45일</td>
<td>정식 후 60일</td>
<td></td>
</tr>
</tbody>
</table>

※ 녹비 네마장황을 이용한 배추 재배 효과(국립원예특작과학원, 2008)

- 시설재배 지내에서 여름 휴한기(6월말~8월말) 동안 네마장황을 재배 후, 후작물 배추를 재배할 경우 관형대비 75% 수준의 배추를 생산할 수 있으며, 네마장황 녹비 활용시 배추재배에 필요한 질소질 비료 50%절감 가능함

<table>
<thead>
<tr>
<th>처리내용</th>
<th>최대입가(cm)</th>
<th>최대한백(cm)</th>
<th>돌출 중량(tf/포기)</th>
<th>수량자수</th>
</tr>
</thead>
<tbody>
<tr>
<td>무질소</td>
<td>32.2</td>
<td>21.0</td>
<td>0.52</td>
<td>26 c</td>
</tr>
<tr>
<td>네마장황</td>
<td>41.6</td>
<td>30.0</td>
<td>1.48</td>
<td>75 b</td>
</tr>
<tr>
<td>네마장황+ N화학비료</td>
<td>47.0</td>
<td>33.0</td>
<td>1.87</td>
<td>95 a</td>
</tr>
<tr>
<td>관령 (NPK)</td>
<td>45.8</td>
<td>30.8</td>
<td>1.96</td>
<td>100 a</td>
</tr>
</tbody>
</table>
4) 물 관리
가) 배추 경영시설 최상기의 1일 생체증기량이 10a당 약 200kg이 증가된 것으로 알려져 있어 수분함량을 감안하면 배추가 흡수해야 할 물의 양이 10a당 190L는 되어야 한다는 뜻임
나) 최상기에 배추 한 포기의 흡수하는 물의 양이 약 500ml에 이르며 10a당 약 4500포기의 정상할 경우, 1일 약 2톤의 물이 필요하고, 지면에서 증발하는 양을 포함하면 그 이상을 관수해야 함
다) 배추에서 물 부족에 의한 생육지연보다도 지면이 높으면서 토양수 부족 시에 나타나기 쉬운 갈삭질병증(언명 곱퉁)으로서, 수량감소나 품질저하의 큰 원인으로 작용하므로 적기 관수가 중요함
라) 토양수분센서를 활용하여 관수할 경우에 사질양토에서는 토양수분함량이 부피비로 25~30%(약 ~30kPa)의 범위에 있을 때 물을 주며, 1회 관수량으로는 10㎜ 관수, 즉 10a당 10톤 정도 해당됨

4 배추 기계이식 기술

기계이식 현황 및 필요성
1) 전남지역의 배추재배면적은 8,025ha(가을+겨울, 전국 19,453ha), 양배추 재배면적은 1,902ha(전국 7,342ha)로 전국 대비 배추는 40%, 양배추는 26% 차지하여 중요한 대면적 작물중 하나임
2) 배추는 감치의 주원료가 되는 소비 비중이 큰 중요한 재료이나 정식 및 수확 작업에 소요되는 생산 단가가 높아 중국산 수입량이 증가하고 있음
 - 수입량 : '01년 1,144톤 → '13년 483,609
 - 재배면적 : '01년 44,419ha → '13년 19,453
3) 배추 재배는 경운정지, 방제작업을 제외한 대부분 정식, 수확 및 재조작업 등을 인력에 의존하여 주산지의 노동력 부족으로 생산비절감을 위한 기계화가 시급함

24 배추 생산비 절감 경영 매뉴얼
기계이식기 제원

1) 기계 제원: 송용 2조식 전자동 이식기
 - 전자동 이식기는 묘 트레이에서 묘를 자동으로 취출하여 이식을 하는 기계
 - 송용 이식기는 사람이 타고 작업을 하는 기계를 의미
 - 송용 2조식 전자동 이식기는 한 번에 두 줄의 이식 작업을 전자동 방식으로
 수행하는 송용 이식기를 의미함

 ![그림: 기계이식기의 모습 (송용2조식 이식기, 우 봄행2조식 이식기)]

2) 이식 작업
 - 이식 작업은 벼, 채소 등과 같은 작물의 모종을 본담으로 옮겨 심는 작업을
 말함, 특히 벼의 경우에는 논에 모를 심는 것을 이양작업이라고 부르며
 이것은 이식 작업의 일종.
 - 좋은 의미로 이식 작업은 밭에 배추, 고추, 상추 등의 채소류를 옮겨 심는
 작업을 말함.
 - 이식 작업의 장점은 육묘시설에서 일정 기간 동안 모를 키워 분배에 이식
 하므로 육묘기간 동안에는 밭에 다른 작물을 재배할 수 있어 토지이용률을
 높일 수 있으며, 직후재배보다 속아내기 제조 등 관리작업을 용이하게 할 수
 있고, 모를 균일하게 키울 수 있어 농산물 성품성을 높일 수 있음.
3) 기계이식 시작기 비교

<table>
<thead>
<tr>
<th>항 목</th>
<th>1차 시작기</th>
<th>벤치마킹 건본기</th>
</tr>
</thead>
<tbody>
<tr>
<td>길이 / 폭 / 높이 [mm]</td>
<td>3580 / 1760 / 2090</td>
<td>3160 / 1725 / 1960</td>
</tr>
<tr>
<td>중량 [kg]</td>
<td>733</td>
<td>630</td>
</tr>
<tr>
<td>동력전달 장치</td>
<td></td>
<td></td>
</tr>
<tr>
<td>주걸리치 형식</td>
<td>블클러치식</td>
<td>블클러치식</td>
</tr>
<tr>
<td>변속방식</td>
<td>유압식</td>
<td>유압식</td>
</tr>
<tr>
<td>변속단수</td>
<td>3단 (이동, 전진, 후진)</td>
<td>3단 (이동, 전진, 후진)</td>
</tr>
<tr>
<td>주행부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>작업속도 (m/s)</td>
<td>0~0.6</td>
<td>0~0.5</td>
</tr>
<tr>
<td>주행속도 (m/s)</td>
<td>0~2.8</td>
<td>0~2.5</td>
</tr>
<tr>
<td>아식방식</td>
<td>호퍼개폐식</td>
<td>호퍼개폐식</td>
</tr>
<tr>
<td>아식장치</td>
<td></td>
<td></td>
</tr>
<tr>
<td>작업가능 두둑범위 [mm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>내측 폭기준: 1,200~1,320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>중심 폭기준: 1,350~1,470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>높이:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>주간거리 조절방식/조절단수 [cm]</td>
<td>레버 변속식 6단 / 18, 21, 34, 40, 46, 54</td>
<td>회전식 핸들 / S단: 26, 30, 35, 40, 45, 50 L단: 43, 50, 60, 70, 80</td>
</tr>
<tr>
<td>조간거리 조절방식/조절단수 [cm]</td>
<td>이식부 위치이동식 / 45, 50, 55, 60, 65</td>
<td>이식부 위치이동식 / 45, 50, 55, 60, 65</td>
</tr>
<tr>
<td>식부갑이 조절 조절방식/조절단수 [cm]</td>
<td>복토몰러 높이 조절식 / 8단, 3~10</td>
<td>복토몰러 높이 조절식 / 10단, 3~10</td>
</tr>
<tr>
<td>수평제어</td>
<td>유압식</td>
<td>×</td>
</tr>
<tr>
<td>식부 높이 조절</td>
<td>전자식 (자동감지)</td>
<td>기계식 (수동)</td>
</tr>
</tbody>
</table>
기계이식 포장 준비

1) 육묘 자재 준비

<table>
<thead>
<tr>
<th>테이블</th>
<th>보강품</th>
</tr>
</thead>
<tbody>
<tr>
<td>트레이</td>
<td>배추는 200구 트레이 25개 내외(10a당)</td>
</tr>
<tr>
<td>파종기</td>
<td>200구 전용 파종으로 시간을 줄이고 파종을 쉽게 하도록 고안</td>
</tr>
<tr>
<td>진입롤러</td>
<td>200구용</td>
</tr>
<tr>
<td>상토</td>
<td>원예용 전용 상토 지역여건에 맞춰 선택 - 10a소요량 : 10포/50L</td>
</tr>
<tr>
<td>복토</td>
<td>복토용 버미클라이트 보수성, 투수성, 통기성이 우수하고 발아에 좋은 양토 개발제</td>
</tr>
</tbody>
</table>

2) 이식기 전용 육묘상자

- 연질육묘포트 : 인력으로 이식작업을 할 때 사용
- 경질육묘포트 : 육묘포트를 재사용하기 위하여 개발
- 플러그 육묘트레이 : 보편화되어 점차 이용률이 증대되고 있음
- 종이포트 : 포트와 묘를 같이 한 주식 분리하여 이식

[육묘 포트의 종류]
3) 포장 준비
 - 기계정식을 위한 조간거리와 주간거리는 각각 500㎜, 두목의 폭은 800㎜, 고량의 폭은 300㎜, 고량 중심에서의 폭은 1,100~1,200㎜

4) 두목 형태 및 규격

 ◆ 엽채류 재배 대표적 이량: 두줄 이량(좌)과 외곽이량(우)

<table>
<thead>
<tr>
<th>두목형태</th>
<th>주간(cm)</th>
<th>조간(cm)</th>
<th>두목폭(cm)</th>
<th>고량폭(cm)</th>
<th>두목높이(cm)</th>
<th>재배방식</th>
</tr>
</thead>
<tbody>
<tr>
<td>평평두목</td>
<td>50</td>
<td>50</td>
<td>80</td>
<td>30</td>
<td>< 5</td>
<td>2열</td>
</tr>
</tbody>
</table>

【육묘전경 및 기계이식 준비 전경】

【정지 및 바닐 열 FirstName】

28_배추 생산비 절감 경영 매뉴얼
기계이식 육묘기술(전라남도농업기술원 2016)

1) 육묘 : 배추 육묘는 초장이 120mm, 연령 5~6매로 뿌리 감감이 상토에 잘 감겨 있어 뿌리 감감 정도가 양호한 상태로 육묘함

2) 육묘 상토 및 트레이 : 상토는 원예용 육묘 상토, 트레이는 기계이식 전용 상자 128구 또는 200구를 활용함. 기계이식 비용을 절감하기 위해서 일반적으로 200구 트레이를 활용함

3) 육묘시 생장조정제 '실라몰' 처리 효과

생장조정제인 실라몰을 배추, 결구상추, 양배추에 처리하였을 때 처리하지 않은 처리구와 도장먹제효과는 큰 차이가 나지 않아 도장 억제에 효과가 없는 것으로 나타났음

4) 육묘시 생육억제제 '반나리' 처리 효과

가) 배추에 반나리 1,000배, 3,000배, 6,000배로 처리한 결과 3,000배 정도의 희석배수가 모의 도장을 억제하고 기계정식시 묘추출에 지장을 주지 않을 정도로 판단됨

나) 육묘시 반나리 처리한 묘가 정식 후에도 반나리 효과가 어느 정도 지속되는 지를 파악하기 위하여 반나리 처리한 묘를 정식한 후 생육을 조사한 결과 처리농도가 감할수록 생육기 및 수확기까지 영향이 있는 것으로 판단되었음
5) 육묘시 LED 광처리 효과

가) LED광 처리를 하였을시 배추의 경우 LED 150(μmol·m²)과 250(μmol·m²)처리가 무처리에 비해 엽초장이 억제되는 경향을 보였으며, 개장폭도 촉지기계적적 맵추출시 접착 부분을 어느 정도 해결할 것으로 판단 되었으며, 아주 고품기에 250(μmol·m²)처리가 적정하며, 봉, 가을에는 150(μmol·m²)처리가 적정할 것으로 판단됨.

나) 모든 작물에서 플러그트레이 128공과 200공 모두 정식이 가능하며, 200공보다는 128공 모가 큰 것으로 나타났음.

○ 생산비절감 경영모델 시범 효과(전라남도농업기술원, 2016)

<table>
<thead>
<tr>
<th>경영모델</th>
<th>kg당 생산비(원)</th>
<th>노동투입(시간)</th>
<th>10a당 소득(천원)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>전</td>
<td>후</td>
<td>증감(%)</td>
</tr>
<tr>
<td>배추 공동육묘·기계적식</td>
<td>238</td>
<td>187</td>
<td>△21.3</td>
</tr>
</tbody>
</table>

※ 배추 공동 육묘·기계적식 도입 생산비 절감 효과
- kg당 생산비 238원 → 187원으로 21.3% 절감
- 노동투입시간 57.6시간 → 28.3시간으로 50.9% 절감
- 10a 소득은 2,131천원 → 2,484천원 16.6% 증

○ 개발기술 평가 항목에 따른 실증 결과

<table>
<thead>
<tr>
<th>평가 항목</th>
<th>승용이식기(시작기)</th>
<th>보행량</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>작업속도(m/s)</td>
<td>0.3</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>결·주·율(%)</td>
<td>17.1</td>
<td>0</td>
<td>낙하(6.3) 포함</td>
</tr>
<tr>
<td>이·식·율(%)</td>
<td>82.9</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>조간거리(cm)</td>
<td>50</td>
<td>45-50</td>
<td></td>
</tr>
<tr>
<td>주간거리(cm)</td>
<td>52.1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>작업면적(㎡/h)</td>
<td>13.6(412평/㎡)</td>
<td>4.38(133평/㎡)</td>
<td></td>
</tr>
</tbody>
</table>
시작기의 이식 성능 측정 결과

<table>
<thead>
<tr>
<th>정식방법</th>
<th>배추</th>
<th>양배추</th>
</tr>
</thead>
<tbody>
<tr>
<td>결 주 융율(%)</td>
<td>16.0</td>
<td>15.0</td>
</tr>
<tr>
<td>이 식 융율(%)</td>
<td>83.9</td>
<td>82.8</td>
</tr>
<tr>
<td>조간거리(cm)</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>주간거리(cm)</td>
<td>41(40.6~41.4)</td>
<td>41.2(40.7~41.2)</td>
</tr>
<tr>
<td>작업속도(m/s)</td>
<td>0.24</td>
<td>0.13</td>
</tr>
<tr>
<td>작업면적(a/h)</td>
<td>10.64</td>
<td>5.83</td>
</tr>
</tbody>
</table>

기계정식 식부상태

<table>
<thead>
<tr>
<th>정식방법</th>
<th>식부자재 15' 이하, (%)</th>
<th>2개모종</th>
<th>문함</th>
<th>손상모으(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>승용</td>
<td>1.7</td>
<td>5.5</td>
<td>1.5</td>
<td>3.4</td>
</tr>
<tr>
<td>보행식</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
</tr>
</tbody>
</table>

【구명외】 【구명(15' 이하)】 【2개모종】 【문함】
○ 정식방법별 작업 생략화율

<table>
<thead>
<tr>
<th>정식방법</th>
<th>순정식(관행)</th>
<th>보행1조식</th>
<th>보행2조식</th>
</tr>
</thead>
<tbody>
<tr>
<td>재식 거래(cm)</td>
<td>48×48</td>
<td>50×52</td>
<td>50×52</td>
</tr>
<tr>
<td>재식주수(주/10a)</td>
<td>3,065</td>
<td>2,738</td>
<td>2,738</td>
</tr>
<tr>
<td>결 주율(%)</td>
<td>0</td>
<td>0</td>
<td>17.1</td>
</tr>
<tr>
<td>이식률(%)</td>
<td>100</td>
<td>100</td>
<td>82.9</td>
</tr>
<tr>
<td>작업속도(m/s)</td>
<td>-</td>
<td>0.1m/s</td>
<td>0.3m/s</td>
</tr>
<tr>
<td>작업면적(a/h)</td>
<td>1.45(44평)</td>
<td>4.38(133평)</td>
<td>13.6(412평)</td>
</tr>
<tr>
<td>작업시간(h/10a)</td>
<td>6.9</td>
<td>2.28</td>
<td>0.73</td>
</tr>
<tr>
<td>최소작업인수(인)</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

○ 정식방법별 수확기 생육 및 수량

<table>
<thead>
<tr>
<th>정식방법</th>
<th>주중 (kg/주)</th>
<th>구중 (kg/구)</th>
<th>염장 (cm)</th>
<th>엽폭 (cm)</th>
<th>구고 (cm)</th>
<th>구폭 (cm)</th>
<th>수량 (kg/10a)</th>
<th>수량지수</th>
</tr>
</thead>
<tbody>
<tr>
<td>보행1조식</td>
<td>33</td>
<td>2.2</td>
<td>30.1</td>
<td>57.6</td>
<td>29.3</td>
<td>18.8</td>
<td>8,970</td>
<td>91</td>
</tr>
<tr>
<td>보행2조식</td>
<td>39</td>
<td>2.2</td>
<td>31.7</td>
<td>58.6</td>
<td>31.5</td>
<td>18.6</td>
<td>10,777</td>
<td>109</td>
</tr>
<tr>
<td>순정식</td>
<td>32</td>
<td>2.1</td>
<td>28.0</td>
<td>59.3</td>
<td>26.8</td>
<td>17.3</td>
<td>9,845</td>
<td>100</td>
</tr>
</tbody>
</table>

병해충 및 생리장해

병해충 방제

1) 배추흰나비

가) 방제법 : 양배추, 케일, 임브로콜리에서 배추흰나비 유충이 주당 0.3~1.0마리 발생시 곤충병원성 선충을 100평당 1×10⁶마리 농도를 40~46L의 물과 화학하여 3일 간격으로 3회 살포하면 92.6~99.0%의 방제효과가 있다.

나) 염채류에서 곤충병원성 선충을 이용한 배추흰나비 방제 효과

2) 검은무늬병(흑벌레군병)

가) 병증 : 처음에는 수침상 엽면의 주변에 작은 반점은 형성 하고 이것이 확대 되면서 갈색다각형의 병변으로 잎, 잎자루 등을 침해한다. 병반이 전면에 일률적인 색으로 변하고 암갈색의 무늬가 들어가는 특징이 있다.

나) 발생조건 : 병원균은 간장세균의 일종으로서 발육온도는 25~27°C, 최저 0°C전후, 최고 29~30°C이며 pH7.0 부근에서 가장 생육이 완성하다. 품종 간에 명확한 차별성의 차이가 있다.

다) 방제 : 해충을 제거하여 식물에 상처가 생기는 것을 막아준다.
3) 고루색음병(Pythium rot)
가) 병증: 유휴기의 질록 중상으로 염록이 섞는데 처음에는 지체부가 수첩상으로 갈색을 띈다.
나) 발생생태: 병원균은 토양 속에서 월동 후 다시 발아하여 1차 전염원이 된다.
저온 다른 조건에서 발생이 심하지만 외부 병징은 고온 건조 시에 잘 나타난다. 병원균은 물을 따라 전염되며, 관수 후 2~3일 내에 식물체로 침입한다.
다) 방제: 건전 토양에서 육묘하고 토양이 장기간 과습하지 않도록 배수를 철저히 한다. 시설 또는 육묘성이 지나치게 자온이나 고푸리 중도로 관리한다.

4) 역병(Phytophthora root rot)
가) 병징: 하염이 시들고 연한 적갈색을 띠기도 한다. 내부가 갈색으로 변하며 하염에 수침상 병반이 나타난다. 뿌리흑병이나 뿌리마름병과 유사하다.
나) 발생생태: 토양이 장기간 과습하거나 침수되면 발생하기 쉽다. 병원균은 종자전염이 가능하나 대부분의 전염원은 토양에서 유입된다.
다) 방제: 재배토양이 과습하거나 침수되지 않도록 배수를 철저히 하고 병든 포기는 뿌리주변 흙과 함께 조기에 제거한다.

5) 뿌리마름병(brittle root rot)
가) 병징: 뿌리의 지체부가 마른 상태로 질록하게 섞어 들어가고, 잎은 풍부 상태로 사진다.
나) 발생생태: 크로미스타(Chromista)의 난균문에 속하는 균류로서 균사, 유주자, 난포자를 형성한다.
다) 방제: 발병 포장은 비 가주 작물과 운작하고 건전한 상태를 사용하거나 상토를 소독 후 육묘한다. 석회를 10a당 150~180kg 사용하면 발병억제 효과가 있다.
6) 무릎병(Soft rot)
가)병증:배추에서 가장 피해가 큰 병해이다. 초기에 지제부 하위엽의 엽병 또는 줄기부터 발생해서 담갈색 수침상의 병변이 급속도로 잎 부분까지 확산되며, 차례로 다른 엽병에도 확산되어 결국에는 줄기내부까지 연화, 부패하게 된다. 이병주는 약취를 풍기는 것이 특징이다.
나) 발생생태:세균병으로 병원균은 주모성 간상세균이며, 발육적온은 32~33°C 이다.
다) 방제:2~3년 동안 벼나 콩과 작물로 육작한다. 조기 피종 시에는 방제 시기를 늦추는 것이 좋다. 적응약제를 실패하되 가능한 지제부까지 약제가 도달하도록 실폈다.

7) 밑둥복음병(Bottom rot)
가)병증: 지제부로부터 발생이 시작된다. 처음에 외엽의 기부가 약간 수침상으로 되고, 또한 잔은 갈색으로 변색한다.
나) 발생생태:병원균은 담자균류의 잔종으로 군핵과 담포자를 형성한다. 다범성균류로 160종의 식물에 기생한다.
피해식물의 잎에 붙어 군사나 군핵의 형태로 토양 중에 들어가 토양진염을 한다.
다) 방제:배추의 연작을 피하고, 화분과 목초의 옥수수와 혼작하는 것이 좋다.

8) 군핵병(Sclerotinia rot)
가)병증:잎과 밑동에서부터 담갈색으로 변하면서 부패되며, 김염 부위에는 흰 군사가 자라하고 후에 흰색 부정형의 군핵이 형성된다.
나) 발생생태:상추, 꽃추, 케일 등도 침해하여 병을 입으킨다. 병원균은 병든 식물체의 조직 및 토양 내에서 군핵의 형태로 움직이거나 감염된 식물체내에서 군사 형태로 움직이 한 다음, 발아하여 자양반과 자양포자를 형성한다. 습도가 높고, 기온이 15~25°C의 서늘한 상태에서 병 발생이 심하다.
다) 방재: 발병주는 주변 황록과 함께 제거하고 시설재배 포장에서는 저온·다습 하지 않도록 한다.

9) 흰무늬병
가) 병조: 주로 잎과 엽렇에 흰빛을 띠어 흰무늬 병이라는 병은 있으나 조건에 따라서 갈색으로 되기도 한다.
나) 발생생태: 병든 잎의 조직 내에서 균사체의 형태로 움직 후 분생포자를 형성하며 공기 전염한다.
다) 방재: 생육 중기에서 다양 발생하기 쉽기 때문에 중기 이후 방재에 중점을 둔다.

10) 점균병(Slime mold)
가) 병조: 잎, 줄기에 발생한다. 처음에는 잎에 깨만 준비형의 포자점이 형성되고, 오랜 시간이 지나면 긴장된 크고, 회백색의 변형체가 형성된다.
나) 발생생태: 엽채류 상추, 무, 배추 등의 재배지에서 간혹 발생한다. 특히, 병변(病変)을 사용한 시설재배에서 피해가 크며, 청결하지 않은 포장에서 발생한다.
다) 방재: 하우스재배 시에는 미숙히나 유기물의 사용을 피하고 완전히 부족된 토양를 사용한 후 재배한다.

11) 뿌리흑병(Clubroot)
가) 병조: 생육 초기 발병주는 뿌린 상태로 시드는 중상을 나타내고, 발병주의 뿌리는 이상 비대되어 작거나 큰 부분형의 혹은 여러 개 형성되고, 형성된 혹은 모양은 식물체의 생육 단계 및 재배 정도에 따라 다르게 보인다.
나) 발생생태: 발생은 토양산소 및 토양수분과 밀접한 관계가 있다. 토양이 산성일 경우에는 발병하기 쉽고, 중성과 알칼리성일 경우에는 발병하지 않는다. 토양수분이 적을 경우에는 발병이 현저히 억제된다. 한편, 지온과 기온이 18~25℃일 때 가장 발병이 많다.
다) 방재: 재배포장은 토양이 과습하지 않도록 관리하고 수확 후 흙을 제거하여 소각 처리한다. 또한 식물해를 사용하여 토양의 산도를 7.2이상으로 조절한다.
12) 노균병(Downy mildew)
가) 병장: 잎에 발생한다. 초기에는 연한 황색의 작은 부정동 병반이 형성되고, 잎 뒷면에 흰 반점이 나타난다. 병반의 형태는 노균병 특유의 엽색에 불명확한 다각형을 이룬다. 발생이 심한 잎은 눈에 그을린 것처럼 마르고 오래된 줄이처럼 고사 한다.
나) 발생특성: 병원균은 증충류의 잎부에서 분포포자와 난포자를 형성한다. 3~25°C에서 번식하고 분포포자의 벌어 적은온도는 7~13°C이다. 포자당은 단세포로 단단하게 쌓는다. 계략형 혹은 레몬형으로 쉽게 이탈되어 공기 중으로 퍼진다. 포자당은 난동과 벌어 적은온도는 8~16°C이고 습도는 96% 이상 되어야 한다.
다) 방제: 병든 잎은 조기에 제거하여 소각 처리 한다. 시설 내에서는 환기를 철저히 하고, 토양이 과습하지 않도록 관리한다.
13) 흑반병(Black spot)
가) 병장: 잎에 담갈색 원형의 작은 병반을 형성하고 간편하게 진단되어 지름이 1cm전후의 원형 병반이 되고, 동심원문을 형성한다.
나) 발생특성: 잎사나 병든 잎에서 균사 혹은 분포포자의 형태로 생존하다가 분포포자로 형성하여 공기로 전염한다. 시설재배보다는 노지재배시 8~10월에 많이 발생한다.
다) 방제: 병에 잘 걸리지 않는 종류를 선택하여 재배하고 식물의 생육 중에 비료가 부족하지 않도록 균형 식비를 한다.
14) 탄자병(Anthracnose)
가) 병장: 주로 잎에서 발생하며, 후에 줄기와 과저기에서도 발생한다. 잎에서는 처음에 흰색의 원형 내지 타원형 반점으로 나타난다.
나) 발생특성: 병원균은 병든 식물체 조직이나 종자에서 균사 혹은 분포포자의 형태로 움직이고 후, 분포포자를 형성하여 공기로 전염한다.
다) 방제: 저항성 품종을 재배하고 수확 후에는 병든 잎을 제거하여 포장을 청결하게 한다.
15) 사들인병(Fusarium wilt)

가) 병짐 : 병원균 뿌리의 도관부에 수분이 상승하는 통로를 막기 때문에 사들음 증상을 일으키며 뿌리 내부를 점차 보면 도관부가 암갈색으로 변해 있다.
나) 발생생태 : 병원균은 피해뿌리와 함께 토양 중에 진촌해 있어 분생포자와 귀사의 대부분이 후막포자로 변하고 이 형태로 생존하며 전염원으로 작용한다.
이 병의 발육전온은 25~27℃, 최저 7℃, 최고 35℃, 발병최적 지온은 26~29℃이다.
다) 방제 : 연작을 피하고 병발생이 심한 토양은 석회를 시용해 토양 산도를 높여 준다(pH 6.5~7.0) 한편 토양 선충에 의해 뿌리상처가 나지 않도록 작물 정식 전에 재배토양을 소독처리한 후 약해의 위험을 없앤 후 재배한다. 미숙태비 시용을 급하고 토양 내 염류농도가 높지 않게 주의한다.

16) 바이러스병

가) 병짐 : CMV(오이모자이크바이러스—Cucumber Mosaic Virus, cmV)에 감염된 온은 미약한 모자이크 및 축엽으로 나타난다. MV(리브그라스모자이크바이러스—Ribgrass Mosaic Virus, RMV)는 잎이나 줄기에 괴저변점으로 나타나고, 결과의 내부까지 진전되어 대부분이 썩게 된다. TuMV(순무모자이크바이러스—Turnip Mosaic Virus, TuMV)는 결과군의 배추에서는 외부임에 모자이크가 나타나지만, 속엽에서는 모자이크는 나타나지 않고 괴저변점으로 나타난다.
나) 발생생태 : 바이러스병의 발생과 진딧물의 비례수는 깊은 관계가 있으며 진딧물의 비례가 많은 해나 포장에서 발병이 많다. RMV는 휘개진염은 하지 않으나, 접촉 및 종자전염이 되므로 오염종자나, 연작지 토양 내의 병든 식물 유체 등이 1차 전염원으로 작용한다.
다) 방제 : 적극적인 방제를 위해서 토양소독을 해야 한다. 일반적으로 저항성 품종 재배, 진딧물 가주 제거, 삼충제 살포로 진딧물을 방제한다.
기상 생리장애

1) 마그네슘(Mg) 결핍증

가) 증상: 농원 잎의 역공이 파괴되어 그 안의 마그네슘이 이동하되므로 인식적 황록화가 이어나고 역공은 허리로 줄어든다. 또한 작물 전체의 생장이 저해되고 잎의 잎맥은 녹색이지만 잎맥 사이는 황화 또는 백화되는 증상을 나타낸다.

나) 결핍의 원인: 토양 중에 마그네슘의 함량 부족, 칼리 비료의 다량 사용 등에 의해 마그네슘의 흡수가 방해, 불량한 배수나 건조 등으로 인해 뿌리의 활력이 약화되어 흡수 되지 못할 때 주로 나타난다.

다) 대책: 젖은 작용을 하는 칼리와 석회질 비료를 과용하지 않으며 용성인비를 밀기름으로 준다. 해마다 많이 발생하는 곳에서는 황산마그네슘을 주여 결핍증이 나타나기 시작하면 가급적 빨리 1~2%의 황산 마그네슘액을 10일 간격으로 4~5회 엽면 살포 한다. 토양이 건조한 경우에는 고토 석회비료를 10~80~100kg 사용한다.

2) 봉소(B) 결핍증

가) 증상: 식물체 내에서 이동이 어려운 요소로 결핍 증상은 주로 새잎이나 생장점 주변에서 나타나는데 줄기의 생장점이 파괴되고 유관속이 파괴되며 뿌리의 생장도 극도로 나빠지고 갈변한다.

나) 결핍의 원인: 토양 중 봉소의 함량이 부족하거나 토양이 건조, 과습 또는 고평으로 배추 뿌리의 봉소 흡수 능력이 저하될 때 생긴다.

다) 대책: 토양 중 봉사가 부족하지 않게 밀기름으로 봉사를 10a당 1~1.5kg 정도 사용하여 결핍증을 하는 석회, 질소, 칼리 등을 필요 이상으로 과용하지 않아야 한다. 봉소 결핍 증상이 나타날 기미가 있으며 0.2%의 봉산액에 생석회를 0.3%가용해서 결정 초기에 2~3회 살포하면 효과를 보기도 한다. 봉소 결핍증을 우려하여 2kg/10a를 초과 하면 피해가 더 커지므로 적당량을 살포한다.
3) 석회 결핍증
가) 증상: 석회가 결핍되면 작물 전체의 생명이 저해되고 거칠어지며 목화가 축진된다.
나) 결핍의 원인: 배추에서 석회 결핍증상은 토양 중에 석회가 부족하거나 질소와 칼리 성분을 과다하게 시비한 경우에 나타난다.
다) 대책: 밀가루로 석회를 사용하여 배추 뿌리가 잘 흡수하도록 토양이 건조하거나 과습하지 않게 하고, 결과 초기에 염화칼슘 0.3%액을 5일 간격으로 3회 정도 잎에 살포한다.

4) 아황산가스(SO₂) 피해
가) 원인: 아황산가스의 피해를 받으면 일반적으로 작물의 부인점이 잎막 사이에 무시하 나타나는 것이 특징으로 조직의 수축, 낙엽현상, 수세의 약화현상과 성장 체증 현상도 나타난다.
나) 대책: 아황산가스에 저항성을 가진 작물이나 품종을 재배하고 단백질대사를 증가시켜 저항성을 높이기 위한 질소증가, 삼투인조질과 원형질 내 이온교환능을 높이기 위한 칼리, 규산질비료 사용과 석회를 토양에 농작물에 살포한다.

5) 암모니아가스(NH₃)
가) 증상: 암모니아가스가 식물체 잎에 접촉되면 잎 표면에 흰색의 반점이 나타나며 잎막 사이가 백색 혹은 회백색, 황색으로 변한다. 잎에 흰색반점이 형성하거나 잎 전체를 백색 또는 황색으로 변색 시킨다.
나) 대책: 질소질 비료의 과용 및 미숙 유기물 사용을 지양한다. 질소질비료는 알가리성 비료와 혼용을 금지하고 비닐가우스 및 비닐터널의 환기를 채저히 한다.

6) 이산화질소가스(NO₂)
가) 증상: 잎막 사이에 백색 또는 황갈색의 불규칙적인 조그마한 괴사 부위를 형성한다.
나) 대책: NO₂가스의 오염원을 줄이거나 저항성 있는 작물이나 품종을 재배하며 비닐가우스 내에서는 환기를 속히 시켜주고, 유기물이 많을 때에는 토양산 성화를 방지한다.
7) 질소 과잉(깨 الصحيح 증상) 및 결핍증
가) 과잉 및 결핍증상: 잎자루 속에 질산태질소의 농도가 높아져 깨 الصحيح 증상이 발생하는데 이는 중족에 깨갈 같은 적은 흰색 반점이 생기는 증상이다.
나) 대책: 토양 중에 질소 비료를 충분히 사용하고 지온기에 질산태질소 비료를 사용하는 것이 좋으며 0.2~2.5%의 요소액을 엽면 살포한다.

8) 칼리(K₂O) 결핍증
가) 증상: 보통 농축색이고 결핍의 정도가 심해지면 옆은 잎에서부터 그 가장 자리의 녹색이 황색 갈색 혹은 회색으로 변한다. 변색부는 점차적으로 잎의 중심을 향하여 진행되고 잎의 엽소증상을 일으킨다.
나) 대책: 배추의 칼리 결핍증을 방지하기 위해서는 칼리 비료를 충분히 사용하고 특히 생육 중·후기에 거름가철에 덜어지지 않도록 덜어짐을 적정량 시비하고 유기물을 충분히 사용한다.

9) 가뭄대책
가) 여름철 배추 재배시 고온과 가뭄 지속 기간이 2주일 이상 지속되면 체증이 현저하게 덜어지므로 인공적인 관수를 한다.

가상재해 및 생리장해 대책

<table>
<thead>
<tr>
<th>항목</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>저온추대</td>
<td>◦ 저온감응이 둔한 품종재배 ◦ 5월 상순이후 파종 ◦ 배추 육묘시 아간10℃이상 보온</td>
</tr>
<tr>
<td>기울가름</td>
<td>◦ 이동식 스프링클러설치 관수 ◦ 잼관기 ◦ 망사찌목, 육묘정식재배, 살충제 살포</td>
</tr>
<tr>
<td>한파</td>
<td>◦ 동해안도 : -3~ -4℃ ◦ 섭씨, 비닐덮기 ◦ 적기수확, 임시저장, 옹정작</td>
</tr>
<tr>
<td>봄가름</td>
<td>◦ 관수, 육묘정식 ◦ 간이 저수장 설치 ◦ 이동식 스프링클러설치 ◦ 잼, 비닐덮기 ◦ 살충제 살포</td>
</tr>
<tr>
<td>호우</td>
<td>◦ 배수구 정비 ◦ 재파, 보파(조생중, 반결구중) ◦ 엽면시비, 살균제 살포</td>
</tr>
</tbody>
</table>

※ 자료출처: 품목별 매뉴얼(농림청) - 배추 농촌신문청
배추 생리장애 및 병해충 사진

【배추 노균병】
【흑 반 병】
【오자이크종세】
【바이러스병】
【칠소과정 까씨무늬증】
【색화결핍증】
배추 기계식 재배 작업 과정도

【시 작 기】
【정식 포장 로터리 작업】

【기계식 포장 비닐 열링】
【시설재배 배추 기계식】

【종자 곡동기 128/200구】
【등식 트레이 누름들】

【파종 후 종자별이 3일째】
【배추 분엽 전개】
배추 생산비 절감 경영 모델 확산 흥보

한국농어민신문

영암군, 배추 자동화시스템으로 '생산비 줄기'
자동화기계 등으로 생산량 증가하는 배추 생산 비용 절감 60% 증가

2021년 10월 20일

농업 생산비 절감을 통한 농가소득 증대에 앞장서는 영암군이 배추 생산비용을 획기적으로 절감해 관심을 받고 있다.

배추재배에 관한 경제성을 강조하고 있는 영암군은 경북지방농협과 산림청, 자원봉사단 등이 제조한 배추 자동화 마로 사용해 생산 비용을 절감해 농가소득 증대에 기여하고 있다.

이색은 자동화가 가능한 병목 부위를 늘리고 60%의 재배비용을 절감해 농가소득 증대에 기여하고 있다. 또한 병목 부위를 늘리고 대형 작물과 짚을 사용해 농가소득 증대에 기여하고 있다. 또한 병목 부위를 늘리고 대형 작물과 짚을 사용해 농가소득 증대에 기여하고 있다.

이색은 자동화가 가능한 병목 부위를 늘리고 60%의 재배비용을 절감해 농가소득 증대에 기여하고 있다. 또한 병목 부위를 늘리고 대형 작물과 짚을 사용해 농가소득 증대에 기여하고 있다.

영암군 농업기술센터의 관계자는 "이번 시험계통의 농업생산의 고용정리에 따라 농 thôn부족에 따른 농업생산 부족 해소와 농가 소득을 증대하는 것에 기여할 수 있으며, 배추 재배비용의 절감에 기여할 것으로 보고 있다." 라고 말했다.

영암군 농업기술센터의 관계자는 "이번 시험계통의 농업생산의 고용정리에 따라 농 thôn부족에 따른 농업생산 부족 해소와 농가 소득을 증대하는 것에 기여할 수 있으며, 배추 재배비용의 절감에 기여할 것으로 보고 있다." 라고 말했다.

광남일보

전남농협, 배추 농사 기회포 대입
재작재배가기자의 대입(상) 생산 비용 증가

영암군 농업기술센터에 따르면, 배추 재배비용의 절감에 기여할 것으로 보고 있다.

영암군 농업기술센터에 따르면, 배추 재배비용의 절감에 기여할 것으로 보고 있다.

아리에

영암군, 감경배추 육묘를 통한 생산비 절감 도모

영암군 농업기술센터에 따르면, 배추 재배비용의 절감에 기여할 것으로 보고 있다.

영암군 농업기술센터에 따르면, 배추 재배비용의 절감에 기여할 것으로 보고 있다.

46_배추 생산비 절감 경영 매뉴얼
평창군, 20일 신기종 농기계 채소이식기 연시교육

고산군, 과제대로 발달형 경건의 양상

거리주, 공정등기장서 배추묘 생산 활동

48_배추 생산비 절감 경영 매뉴얼
자료 분석 편집

- 편집기획 | 조 동 호
- 자료총괄 | 손 장 환
- 재배기술 | 정 중 모, 장 미 향
- 분석자문 | 박 평 식
- 자료검토 | 서 중 분, 박 신, 조 용 관
- 편집교정 | 정 희 경, 김 현 주

생산비 절감 경영자료 20-5

배추

생산비 절감 경영 매뉴얼

발간등록번호 : 78-6460077-000230-01

- 발행일 | 2017년 11월
- 발행인 | 전라남도농업기술원장 김 성 일
- 편집인 | 연구개발국장 김 현 우
 | 기술지원국장 김 봉 환
- 발행처 | 전라남도농업기술원
 | (58213) 전남 나주시 산포면 선남로 1508
 | ☎ (061) 330-2882
- 인쇄처 | 중앙문화
 | 전남 무안군 새항읍 삼항로 72 ☎(061) 284-0295