무화과 열매 가공원료의 전처리 방법

1. 배경 및 필요성
 ○ 무화과는 식이섬유, 무기질, 폴리페놀 함량이 우수한 식품이나 수확 후 저장성이 낮아서 대부분 생과일로 이용되고 있음
 ○ 무화과의 부가가치를 높이는 가공제품 개발 따른 원료의 전처리방법이 필요

2. 영농기술·정보 내용
 ○ 무화과 열매를 100℃ 끓는 물에서 1분간 탈취하면 칼슘, 인, 칼륨 등 무기질 함량과 식이섬유함량 감소율이 적었고, 총페놀 함량과 미생물의 오염도를 낮춰 살균효과가 높았음
 ○ 무화과 열매 전처리 방법
 무화과열매 → 수돗물로 세척 → 데치기 (100℃ 끓는 물에서 1분간)

3. 기대 및 파급효과
 ○ 무화과 열매 판매량의 수급 조절로 가격하락 감소 및 저장성 향상
 ○ 고식이섬유 함유 발효기술 개발로 농특산물의 기호성 및 부가가치 향상
4. 연구결과요약

【표 1】무화과 열매의 품종별 품질특성 비교(2016)

<table>
<thead>
<tr>
<th>품종별</th>
<th>당도 (°Brix)</th>
<th>총당 (㎎/g)</th>
<th>무기질 (㎎/100g)</th>
<th>색 도</th>
</tr>
</thead>
<tbody>
<tr>
<td>승정도우핀</td>
<td>15.7</td>
<td>883</td>
<td>274</td>
<td>7.80</td>
</tr>
<tr>
<td>봉래시</td>
<td>15.9</td>
<td>761</td>
<td>289</td>
<td>6.42</td>
</tr>
</tbody>
</table>

【그림 1】무화과 품종별 유리당 함량 및 기능성 평가(2016)

【표 2】무화과 열매의 전처리방법별 이화학적 특성 비교(2016)

<table>
<thead>
<tr>
<th>전처리방법</th>
<th>당도 (°Brix)</th>
<th>총당 (㎎/g)</th>
<th>Fructose (㎎/g)</th>
<th>Glucose (㎎/g)</th>
<th>무기질 (㎎/100g)</th>
<th>칼슘</th>
<th>인</th>
<th>칼륨</th>
</tr>
</thead>
<tbody>
<tr>
<td>무처리</td>
<td>15.7a</td>
<td>882.9a</td>
<td>27.3b</td>
<td>35.3c</td>
<td>274.4a</td>
<td>142</td>
<td>14847</td>
<td>2.39</td>
</tr>
<tr>
<td>데치기</td>
<td>13.5c</td>
<td>868.2b</td>
<td>28.3a</td>
<td>38.7a</td>
<td>237.6b</td>
<td>141</td>
<td>1760.8b</td>
<td>6.42</td>
</tr>
<tr>
<td>효소처리</td>
<td>14.6b</td>
<td>829.0c</td>
<td>28.9a</td>
<td>37.6b</td>
<td>219.8c</td>
<td>125</td>
<td>1594.9c</td>
<td>6.34</td>
</tr>
</tbody>
</table>

* n=3, 평균간 유의성은 일원배치 분산분석 후 사후검정은 Duncan’s 다중검정(p<0.05)

【표 3】무화과 열매의 전처리방법별 기능성 성분 및 총균수 비교(2016)

<table>
<thead>
<tr>
<th>전처리방법</th>
<th>총페놀 (㎎/g)</th>
<th>DPPH radical 저해활성 (%)</th>
<th>ABTS radical 저해활성 (%)</th>
<th>총균수(CFU/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>일반세균</td>
<td>대장균</td>
<td></td>
</tr>
<tr>
<td>무처리</td>
<td>188.6b</td>
<td>30.9a</td>
<td>31.5a</td>
<td>4.2×10⁴</td>
</tr>
<tr>
<td>데치기</td>
<td>191.9a</td>
<td>30.8a</td>
<td>27.5b</td>
<td>2.8×10⁴</td>
</tr>
<tr>
<td>효소처리</td>
<td>171.7c</td>
<td>27.5b</td>
<td>21.2c</td>
<td>3.4×10⁴</td>
</tr>
</tbody>
</table>

* n=3, 평균간 유의성은 일원배치 분산분석 후 사후검정은 Duncan’s 다중검정(p<0.05)

문의처
친환경농업연구소 : 강정화, 이유석, 이선경, 지수현, 조경숙 (☎ 061-330-2511)